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ABSTRACT 
Series-parallel systems are made up of combination several series & parallel configuration to obtain system 

reliability down into homogeneous subsystems. This is very simple to analyse a simple series-parallel system 

without any error effects, But very difficult to analyse a complex system with various error effects. This paper 

we presented mathematical analysis of a Redundant Complex System with Imperfect switching, Environmental 

and Common Cause and Human error effects under Head of Line Repair Discipline. 
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I. INTRODUCTION 
Kontoleon & Konoleon [2] had considered a 

system subject to partial and catastrophic failures to 

be repaired at a single service station and also 

assumed exponential distribution for repair. Gupta 

and Mittal [3] considered a standby redundant system 

and two types of failures to be repaired at a single 

service station with general repair time distribution 

under pre-emptive resume repair Discipline 

incorporating environmental effects. Further, Gupta 

and Agarwal [1] developed a model with two types of 

failure under general repair time distribution and 

under different repair discipline. Consequently 

Agarwal, Mittal et. al., [4] have solved the model of a 

Parallel redundant complex system with two types of 

failures with Environmental effect under preemptive 

Resume repair Discipline. Mittal, Gupta et. al., [1,3] 

have assumed constant repair rate due to 

environmental failure and perfect switching over 

device of a standby redundant system under pre-

emptive resume and repeat discipline respectively. 

But it is not always possible that the switch is perfect. 

It may have some probability of failure. So the 

authors have initiated the study keeping in mind the 

practical aspect of imperfect switch. Also repair due 

to environmental effects is considered to follow 

general time distribution. 

In this paper, we consider a complex system 

consisting of three independent, repairable 

subsystems A, B & C. Subsystem B is comprised of 

two identical units B1 & B2. The subsystem C is in 

standby redundancy to be switched into operation 

when both the identical units B1 & B2 of subsystem B 

fails, through an imperfect switching over device. For 

the smooth operation of the system, the subsystems B 

or C are of vital importance. The failure of the 

subsystem C results into non-operative state of the 

system. At the time of installation, the units of 

subsystem B have the same failure rate but due to 

adverse environmental effects, the failure rate of the 

subsystem C increases by the time, it is switched into 

operation. Subsystem A has minor failure and 

subsystem C has major and minor failures. Minor 

failure reduces the efficiency of the system causing a 

degraded state while major failure results into a non-

operable state of the system. The whole complex 

system can also be in a total failure state due to 

Human error or Environmental effects like 

temperature, humidity etc. The repair rate due to 

Human error or Environmental failure is considered 

general. Laplace transforms of the time dependent 

probabilities of the system being in various states 

have  been obtained by employing the techniques 

using supplementary variable under Head-of line 

Repair Discipline. The general solution of the 

problem is used to evaluate the ergodic behaviour 

and some particular case. At the end of the chapter 

some numerical illustrations are given and various 

reliability parameters have been calculated. The flow 

of states is depicted in the state transition diagram. 
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The following symbols are used in state transition diagram: 

 

     : Operable    : Degarded 

 

     : Imperfect   :    : Failed  

       switch 

 
Fig. 1. STATE TRANSITION DIAGRAM 

 

II. NOTATIONS: 
1 : Minor failure rate of the operating units B1 

& B2 of subsystem B. 

2(1<2): Minor failure rate of the 

operating unit of subsystem C 

1m : Minor failure of subsystem A. 

2m : Major failure of subsystem B & C. 

x: Elapsed repair time for both units of 

subsystem B. 

y: Elapsed minor repair time for the 

subsystem A, B & C. 

z: Elapsed major repair time for the 

subsystem B & C. 

v: Elapsed repair time for environmental 

failure. 

h: Elapsed repair time for human error 

failure. 

B(x) : Repair rate of subsystem B 

)(
1

ym : Repair rate of minor failure of 

subsystems A, B & C. 

)(
2

zm : Repair rate of major failure of 

subsystems B & C. 

 : Failure due to environmental effects. 

 : Failure due to human error. 

 : Failure due to common cause. 

(v) : Repair rate due to environmental 

effects. 

(h) : Repair rate due to Human error. 

(c) : Repair rate due to common cause 

b, R1 Probability of the successful operation 

of the switching over device  

                 and constant repair rate of 

switching over device. 

 

III. ASSUMPTIONS 
(1) Initially, at time t = 0 the system is in operable 

state, i.e., it operates in its normal efficiency 

state 

(2) The subsystem B consists of two identical units 

B1 & B2. 

(3) Switching device is imperfect. 

(4) When the system starts functioning the 

subsystems A & B will operate and C is in stand 

by. 

(5) When the system starts functioning both the 

subsystems B & C have the same failure rate 1 

as minor failure, but as the time passes due to the 

adverse environmental effects, the failure rate of 

the stand by unit i.e., subsystems C increase to 2 

which is the minor failure of subsystem C by the 

time it is needed to operate. 

(6) Subsystem A has no major failures. 

(7) During the degraded state of the system due to 

minor failure in subsystems A, B & C, major 

failures may also occur in subsystems B & C. 

(8) All the failures are distributed exponentially. 

(9) All the repair follows general time distribution. 



K. Uma Maheswari et al Int. Journal of Engineering Research and Applications           www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 2), June 2014, pp.84-100 

 www.ijera.com                                                                                                                              86 | P a g e  

(10) The system fails completely due to 

environmental effects or due to major failures of 

the subsystems B & C or due to the failure 

caused by Human error. 

(11) Repair of the subsystem C is taken only in failed 

state. 

(12) During the repair of the subsystem C in failed 

state, the failed units of subsystem B are also 

repaired. 

 

STATE PROBABILITIES DESCRIPTION: 

(i)  )(0, tPa  : Probability that the system is in 

operable state at the time t, where a=0, 0, 1, 

2. 

(ii)  ),(0,3 txP : Probability that the system is the 

failed state and is under repair with elapsed 

repair time in the interval (x, x+). 

(iii)  ),(
1, tyP ma : Probability that the system is in 

degraded state and is under repair with 

elapsed repair time lying in the interval (y, 

y+) where a = 0,1,2. 

(iv)  ),(
2, tzP ma  : Probability that the system is 

the failed state and is under repair with 

elapsed repair time in the interval (z, z+) 

where a = 0,1,2. 

(v)  ),( tvPE : Probability that the system is in 

failed state due to Environmental failure and 

is under repair with elapsed Repair time in 

the interval (v, v+). 

(vi)  )(tPr : Probability that the system is in 

failed state due to failure of the switch in 

switching the subsystem C when subsystem 

B completely fails at any time t. 

(vii)  ),( thPh : Probability of the system is in 

failed state due to Human error and is under 

repair with elapsed repair time in the 

interval (h, h+). 

(viii)  ),( tuPv : Probability of by the system is in 

failed state due to common cause error and 

is under repair with elapsed repair time in 

the interval (u, u+). 

 

IV. FORMULATION OF THE 

MATHEMATICAL MODEL: 
Using continuity arguments and probability 

considerations, we obtain the following difference 

differential equations governing the stochastic 

behaviour of the complex system, which is discrete is 

space and continuous in time: 
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BOUNDARY CONDITIONS 
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)(),0( 0,2 tPtPH                                                     (24) 

 

INITIAL CONDITIONS 

P0,0(0) = 1 and all other states probabilities are zero at time t = 0. 
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y

mm yyys

mm esPsyP 0
112

11

)(][

0,0,0 )(),(


  

On simplification 

)()(),( 10,0,0 11
sVsPsyP mm                                                                 (25) 

where 









1

1

1

2

21
)(1

)(
m

mm

s

ss
sV        

from equation (7) 

0),()(
112 ,11 


















tyPy

yt
mmm   

Taking Laplace transforms on both sides 



K. Uma Maheswari et al Int. Journal of Engineering Research and Applications           www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 2), June 2014, pp.84-100 

 www.ijera.com                                                                                                                              89 | P a g e  

 )(
),(

),(

12

1

1

1

,1

,1

ys
syP

syP
y

mm

m

m

 




  

Integrating ‘y’ between the limits ‘0’ to ‘y’ 
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Taking Laplace transforms on both sides 
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Taking Laplace transforms on both sides 
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Taking Laplace transforms on both sides 
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Taking Laplace transforms on both sides 
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 Substituting the values of )(sPr , ),(,2 1 symP in the above equation we get 
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Taking Laplace transforms on both sides 
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Substituting the values of 

),(0.3 sxP , ),(
1.1 syP m , ),(

2.1 szP m , ),(
2.2 szP m , ),( svPE , ),( shPH , ),( suPC  

In the above equation we get 

 )()()()()( 0,0270,2260,1 sPsVsPsVsP                                                  (36) 
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From equation 1 
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Taking Laplace transforms on both sides 
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Substituting the values of  

 ),(0.3 sxP , ),(
1.0 syP m , ),(

2.0 szP m , ),(
2.2 szP m , ),( svPE , ),( shPH , ),( suPC in the above 

equation we get 

 1)()()()()()( 0,1240,2230,025  sPsVsPsVsPsP                                                (37) 

From equation 34 

 )]()()[(),( 0,10,0220,2 sPsPsVsxP   

Substitute the value of )(0,1 sP in this equation we get 
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From equation 36 
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From equation 37 
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Substitute the value of )(),( 0,10,2 sPsP in this equation we get  
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Substituting the value )(P 0,0 s in equation (37, 38) we get 
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Evaluation of operational Availability and Non-Availability 

The Laplace transforms of the probability that the system is in operable up and down state at time ‘t’ can be 

evaluated as follows. 
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ERGODIC BEHAVIOUR 

Using Abel’s lemma is Laplace transform, 
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, provided that the limit on the R.H.S exists, the time independent 

up and down state probabilities are as follows. 
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PARTICULAR CASE:- When repair follows exponential distribution setting 

i

i
i

s
sS






)(  and 









s
sS )( where i = B, m1, m2 in results (25) to (34) (39) (40) (41) one may get the various probabilities as 

follows: 
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UP and Down state probabilities 

The Laplace transforms of up and down state probabilities are as follows. 
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RELIABILITY: 
Laplace transforms of the reliability of the system given as follows: 
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Taking inverse Laplace transforms of the above equation we get 
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M.T.T.F 
Mean time to system failure is the expected time to operate the system successfully which is given as 

follows: 
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where   121 mmA ,    121 mmB    

  12mC ,     22mD  

 

Numerical Illustrations: 

Reliability Analysis: 

01.01  , 02.02  , 011.0
1
m , 015.0

2
m ,  = 0.01,  = 0.02,  = 0.03, b = 0.96 and for 

different values of t in the equation (60) one may obtain the reliability of the system as given in fig 2. The 

reliability of the system decreases slowly as the time period increases. It also depicts the reliability of the system 

for a long time period. 

 

M.T.T.F 

1 = 0.01, 2 = 0.02, 01.0
1
m , b = 0.96,  = 0.02 and taking different values of 

2m in the equation (61) 

one may obtain the variations of M.T.T.F. of the system against the environmental failure rate  shown in figure 

3. 

The variations in M.T.T.F w.r.to Environmental failure rate as the major failure rate of the subsystem A 

increases. The series of curves Represents that MTTF decreases as the environmental failure increases 

apparently. 
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Fig. 5.6. 

 
Fig.6 

 

V. DISCUSSION 
In this paper we presented mathematical models 

of imperfect switching, environmental, common 

cause and human error effects, so probabilistic 

behaviour considering various values of coefficient 

of human error, common cause, environmental 

effects respectively. 

 

VI. CONCLUSIONS : 
The Reliability, MTTF curves are plotted in figures (2), 

(3). From these graphs we observe that 

i) The Reliability of the system decreases slowly as 

the time period increases. 

ii) The MTTF decreases as the environmental 

failure increases 
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